If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4t^2-30t-60=0
a = 4; b = -30; c = -60;
Δ = b2-4ac
Δ = -302-4·4·(-60)
Δ = 1860
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1860}=\sqrt{4*465}=\sqrt{4}*\sqrt{465}=2\sqrt{465}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-2\sqrt{465}}{2*4}=\frac{30-2\sqrt{465}}{8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+2\sqrt{465}}{2*4}=\frac{30+2\sqrt{465}}{8} $
| 0.56x-8=0.2(10-5x) | | 3x+2(x-1)=x+7 | | 1=4^5x | | 1.05^n=2 | | 3(1-3x)=3(5x+2) | | 5x-7+3(6x-6)=28 | | 3(1-3x)=3 | | 18y+5+21=180 | | 3(3-2x)=2(3x+1) | | B=3/2(j-69) | | -(-2•+3)=2x-3 | | x-5/3=8/19 | | 2y=16y-2y | | (x+1)(2x)=1 | | -2x/12=x+1/4 | | 10x+133=180 | | -2=6.7p | | -5m+13+6m=-2 | | 2x=4x-x | | 20y+25y+10-25=180 | | .8b+12-b=8+7b+4 | | 2(1-4x)=3x+8 | | 4x-6/12=x+1/4 | | 92=4z−-8 | | 7x-20=-34 | | 9w+9+6w+21=180 | | 3(2-2x)=2(3x+1) | | 2=8-2d | | 8=1/4(5x-8) | | x/8=-x/5 | | 15x+24=18x | | 2(5-2x)=3(9x+3) |